Contributions to HiLiftPW-3 Using Structured, Overset Grid Methods

Presented at AIAA SciTech 2018
Kissimmee, FL
January 10, 2018

Jim Coder

University of Tennessee, Knoxville

Tom Pulliam and James Jensen NASA Ames Research Center

Outline

- Introduction
- Description of HiLiftPW-3 Geometries and Cases
- Computational Methodologies
- Results
- Conclusion
- Acknowledgments

Introduction

- Two geometries of interest
 - High-Lift Common Research Model (HL-CRM)
 - Completely predictive
 - JAXA Standard Model (JSM)
 - Transitional test case
- Structured, overset grids generated and provided by the organizing committee
- Two overset solvers considered in this paper
 - OVERFLOW (UTK and NASA)
 - LAVA (NASA)

Outline

- Introduction
- Description of HiLiftPW-3 Geometries and Cases
- Computational Methodologies
- Results
- Conclusion
- Acknowledgments

HL-CRM Geometry

 Open-source high-lift configuration based on the Common Research Model (Lacy and Sclafani, 2016)

HL-CRM Cases (Case 1)

- Case 1a (requested): Full-Chord Flap Gap grid-refinement study
- Case 1b (optional): Full-Chord Flap Gap with grid adaptation
- Case 1c (optional): Partially Sealed Chord Flap Gap for medium-resolution grid only
- Case 1d (optional): Partially Sealed Chord Flap Gap with grid adaptation

Free-stream Mach Number	0.2
Angles of Attack	8° and 16°
Mean Aerodynamic Chord (MAC)	275.8 in (full scale)
Reynolds Number (based on MAC)	3.26×10^6
Reference Static Temperature	518.67 °R (288.15 K)
Reference Static Pressure	14.700 psi (760.21 mm-Hg)

JSM Geometry

 Representative of a 100-person-class transport with a modern high-lift system (Yokokawa et al., 2006 and 2008)

JSM Cases (Case 2)

- Case 2a (requested): Nacelle/Pylon Off
- Case 2b (optional): Nacelle/Pylon Off with grid adaptation
- Case 2c (requested): Nacelle/Pylon On
- Case 2d (optional): Nacelle/Pylon On with grid adaptation

Free-stream Mach Number	0.172
Angles of Attack	4.36°, 10.47°, 14.54°, 18.58°, 20.59°, and 21.57°
Mean Aerodynamic Chord (MAC)	529.2 mm (model scale)
Reynolds Number (based on MAC)	1.93×10^6
Reference Static Temperature	551.79 °R (306.55 K)
Reference Static Pressure	14.458 psi (747.70 mm-Hg)

Outline

- Introduction
- Description of HiLiftPW-3 Geometries and Cases
- Computational Methodologies
- Results
- Conclusion
- Acknowledgments

Flow Solvers and Approach

- OVERFLOW 2.2 (UTK and NASA)
 - Node-centered, finite-difference
 - RHS discretization: 3rd-order MUSCL w/ Roe fluxes
 - LHS algorithm: ARC3D scalar pentadiagonal solver
 - Turbulence model: Spalart-Allmaras SA-noft2-RC-QCR2000
 - Transition model: Coder AFT2017b (SA-RC-QCR2000-AFT2017b)
- Turbulence model variant and inclusion of transition modeling studied
- Time accuracy effects studied
 - BDF2 implicit scheme
 - Timestep chosen to give 2 orders of magnitude drop in unsteady residual in 10-20 subiterations

Flow Solvers and Approach

- LAVA (NASA)
 - Node-centered, finite-difference
 - RHS discretization: 2nd-order MUSCL w/ Roe fluxes
 - Van Albada limiter
 - Turbulence model: Spalart-Allmaras SA-noft2-RC-QCR2000
- "Cold starts" used for all cases

Computational Resources

- All simulations run on NAS Pleiades
 - SGI ICE system
 - Over 11,000 nodes with over 245,000 cores
 - Intel Xeon (Broadwell, Haswell, Ivy Bridge, Sandy Bridge)
- OVERFLOW simulations run on 420 cores (fully turbulent) and 560 cores (transitional)
 - 24-48 hours of wall-clock time to convergence
- LAVA required 2000 cores with 48 hours of wall clock time

Outline

- Introduction
- Description of HiLiftPW-3 Geometries and Cases
- Computational Methodologies
- Results
- Conclusion
- Acknowledgments

Case 1: Surface Smoothness Issues

- Original HL-CRM overset grids were projected onto a surface triangulation rather than the smooth CAD
 - Leads to oscillatory pressure behavior
- New grids generated with projection directly to CAD

Case 1: Turbulence Modeling Effects

- Use (or exclusion) of QCR had a prominent effect on the flow behavior around the flap gap
 - QCR typically regarded as primarily affecting juncture flows

Case 1: Turbulence Modeling Effects

16

• Lift

$$\alpha = 8^{\circ}$$

$$\alpha = 16^{\circ}$$

Drag

$$\alpha = 8^{\circ}$$

$$\alpha = 16^{\circ}$$

Pitching Moment

$$\alpha = 8^{\circ}$$

$$\alpha = 16^{\circ}$$

• Representative behavior ($\eta = 0.151$, $\alpha = 16^{\circ}$)

$$\alpha = 8^{\circ}$$

$$\alpha = 16^{\circ}$$

Case 1: Effect of Flap Gap Seal

 Gap seal reduces separation near the gap, but induces separation inboard

21

- Strong effect of turbulence/transition modeling
- Multiple possible solutions depending on initial condition

• Selected pressure distribution (4.36 deg)

Main element, $\eta = 0.89$

• Selected pressure distribution (18.58 deg)

- Strong effect of turbulence/transition modeling
- No evidence of multiple solutions

• Surface flow patterns ($\alpha = 18.58^{\circ}$)

LAVA

• Surface flow patterns ($\alpha = 18.58^{\circ}$)

OVERFLOW (fully turbulent)

• Surface flow patterns ($\alpha = 18.58^{\circ}$)

OVERFLOW (transitional)

• Transition patterns ($\alpha = 18.58^{\circ}$)

Experiment (China clay)

OVERFLOW (turbulent index)

• Transition patterns ($\alpha = 18.58^{\circ}$)

Experiment (China clay)

OVERFLOW (turbulent index)

Outline

- Introduction
- Description of HiLiftPW-3 Geometries and Cases
- Computational Methodologies
- Results
- Conclusions
- Acknowledgments

Conclusions (HL-CRM)

- Fully predictive, so no experimental data available for comparison
- Surface smoothness had an impact on surface pressure distributions
 - Grid should be projected to smooth CAD rather than triangulated surfaces
- Use of QCR had a strong influence of flap separation patterns with the unsealed flap gap

Conclusions (JSM)

- Evidence of multiple solutions observed for nacelle/pylon off
 - "Warm" versus "cold" starts influenced final solution
 - Time accurate results more consistent with warm starts
 - Phenomenon not observed with nacelle/pylon on
- Excluding QCR had an impact, but not a consistent shift
 - Nacelle/pylon off: Excluding QCR delays stall with AoA
 - Nacelle/pylon on: Excluding QCR accelerates stall with AoA
- Transition modeling had an overall positive impact
 - Better agreement in aerodynamic coefficients
 - Predicted transition patterns consistent with experiment
 - Not a panacea separation patterns still have discrepancies

Outline

- Introduction
- Description of HiLiftPW-3 Geometries and Cases
- Computational Methodologies
- Results
- Conclusion
- Acknowledgments

Acknowledgments

 J.G. Coder thanks Cetin Kiris of NASA Ames Research Center for providing access to the NASA Advanced Supercomputing (NAS) Pleiades cluster

Questions?

